Please use this identifier to cite or link to this item: https://hdl.handle.net/10321/4694
DC FieldValueLanguage
dc.contributor.authorAdisa, Julianaen_US
dc.contributor.authorOjo, Samuelen_US
dc.contributor.authorOwolawi, Piusen_US
dc.contributor.authorPretorius, Agnietaen_US
dc.contributor.authorOjo, Sunday O.en_US
dc.date.accessioned2023-03-28T14:18:07Z-
dc.date.available2023-03-28T14:18:07Z-
dc.date.issued2022-03-
dc.identifier.citationAdisa, J. et al. 2022. Credit score prediction using genetic algorithm-LSTM technique. 2022 Conference on Information Communications Technology and Society (ICTAS). Presented at: 2022 Conference on Information Communications Technology and Society (ICTAS). doi:10.1109/ictas53252.2022.9744714en_US
dc.identifier.isbn9781665440172-
dc.identifier.urihttps://hdl.handle.net/10321/4694-
dc.description.abstractIn data mining, the goal of prediction is to develop a more effective model that can provide accurate results. Prior literature has studied different classification techniques and found that combining multiple classifiers into ensembles outperformed most single classifier approaches. The performance of an ensemble classifier can be affected by some factors. How to determine the best classification technique' Which combination method to employ' This paper applies Long Short-Term Memory (LSTM), one of the most advanced deep learning algorithms which are inherently appropriate for the financial domain but rarely applied to credit scoring prediction. The research presents an optimization approach to determine the optimal parameters for a deep learning algorithm. The LSTM parameters are determined using an optimization algorithm. The LSTM parameters include epochs, batch size, number of neurons, learning rate and dropout. The results show that the optimized LSTM model outperforms both single classifiers and ensemble models.en_US
dc.format.extent6 pen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectLong short-term memoryen_US
dc.subjectGenetic algorithmsen_US
dc.subjectCredit scoringen_US
dc.subjectCredit predictionen_US
dc.titleCredit score prediction using genetic algorithm-LSTM techniqueen_US
dc.typeConferenceen_US
dc.date.updated2023-03-16T14:54:05Z-
dc.relation.conference2022 Conference on Information Communications Technology and Society (ICTAS)en_US
dc.identifier.doi10.1109/ictas53252.2022.9744714-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.openairetypeConference-
item.grantfulltextopen-
item.cerifentitytypePublications-
Appears in Collections:Research Publications (Accounting and Informatics)
Files in This Item:
File Description SizeFormat
IEEE Copyright clearance.docxCopyright clearance227.39 kBMicrosoft Word XMLView/Open
Adisa_Ojo et al_2022.pdfArticle418.36 kBAdobe PDFView/Open
Show simple item record

Page view(s)

203
checked on Dec 22, 2024

Download(s)

305
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.