Please use this identifier to cite or link to this item:
https://hdl.handle.net/10321/4988
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kumar, Arvind | en_US |
dc.contributor.author | Prasad, Basheswar | en_US |
dc.contributor.author | Kumari, Sheena | en_US |
dc.contributor.author | Bux, Faizal | en_US |
dc.date.accessioned | 2023-09-19T07:53:16Z | - |
dc.date.available | 2023-09-19T07:53:16Z | - |
dc.date.issued | 2023-08 | - |
dc.identifier.citation | Kumar, A. et al. 2023. Mechanistic insight into SO4•−/•OH radical for enhancing stability and activity of LaMO3 perovskite toward detoxification of bulk pharmaceutical wastewater: Stoichiometric efficiency and controlled leaching study. Separation and Purification Technology. 319: 123967-123967. doi:10.1016/j.seppur.2023.123967 | en_US |
dc.identifier.issn | 1383-5866 | - |
dc.identifier.issn | 1873-3794 (Online) | - |
dc.identifier.uri | https://hdl.handle.net/10321/4988 | - |
dc.description.abstract | This study aims to investigate the detoxification of real pharmaceutical manufacturing wastewater by PMS activated with perovskite LaMO3 (M = Cu, Co, Fe), synthesized by citric sol–gel method. The textural properties of synthesized perovskite were monitored by BET, FESEM/EDS, TEM, XRD, FTIR, and XPS techniques. The effects of key parameters (PMS dose, catalyst, pH and reaction temperature) on ofloxacin degradation along with PMS utilization efficiency as well as PMS consumption were evaluated in detail. Catalyst LaCoO3 exhibited the excellent catalytic activity and stability towards the degradation of ofloxacin (97.11 %) and COD (79.41 %) at optimum operating conditions. Removal of ofloxacin and COD were suppressed by 7 % and 9 % over the fourth cycle, along with minor leaching of Co were observed. Quenching experiments and EPR results demonstrated that both ROS species (SO4•− and •OH) were dominant species for ofloxacin degradation in LaCoO3/PMS system. The treatment cost for ofloxacin degradation in LaCoO3/PMS system was estimated to be 40.78$/m3 of real pharmaceutical wastewater. Six plausible degradation pathways of ofloxacin were proposed based on intermediate compounds identified by GC-MS and reported literature. | en_US |
dc.format.extent | 16 p | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier BV | en_US |
dc.relation.ispartof | Separation and Purification Technology; Vol. 319 | en_US |
dc.subject | 0301 Analytical Chemistry | en_US |
dc.subject | 0904 Chemical Engineering | en_US |
dc.subject | Chemical Engineering | en_US |
dc.subject | Ofloxacin | en_US |
dc.subject | LaCoO3/PMS system | en_US |
dc.subject | Perovskite | en_US |
dc.subject | Phytotoxicity | en_US |
dc.subject | Pharmaceutical contaminants | en_US |
dc.subject | Reactive oxygen species | en_US |
dc.title | Mechanistic insight into SO4•−/•OH radical for enhancing stability and activity of LaMO3 perovskite toward detoxification of bulk pharmaceutical wastewater: Stoichiometric efficiency and controlled leaching study | en_US |
dc.type | Article | en_US |
dc.date.updated | 2023-09-15T06:32:20Z | - |
dc.identifier.doi | 10.1016/j.seppur.2023.123967 | - |
local.sdg | SDG06 | - |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
Appears in Collections: | Research Publications (Water and Wastewater Technology) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Kumar et al_2023.pdf | Article | 13.28 MB | Adobe PDF | View/Open |
Sep Pur Tech Copyright Clearance.docx | Copyright clearance | 145.3 kB | Microsoft Word XML | View/Open |
Page view(s)
185
checked on Dec 22, 2024
Download(s)
85
checked on Dec 22, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.