Please use this identifier to cite or link to this item: https://hdl.handle.net/10321/1498
Title: Evaluation of micro-scaled TiO b2 s on degradation and recovery of mTiO b2 s from treated drinking water
Authors: Dlamini, Chazekile Precious 
Issue Date: 2016
Abstract: 
River water is a life supporting watercourse to most communities in rural areas. It is used for both human and animal consumption, and is well becoming a collection channel for defecation and urination due to shortage or lack of access to running water and sanitation facilities. This has resulted to the contamination of water sources, which poses a great risk to human health. This has motivated researchers to study simple but yet robust systems to produce safe drinking water. Photocatalysis is one of such emerging disinfection technologies.
Titanium dioxide (TiO2) which is one of the basic materials used for paint manufacturing has emerged as an excellent photocatalyst material for water purification. TiO2 was selected in this study because it is locally available with a potential to open a new market in water purification for the manufacturers. The setback in previous studies is the recovery of nano-scaled TiO2 (nTiO2) after purification when used as a suspension in treated water. Thus this study evaluates the performance of four grades of micro-scaled TiO2 (mTiO2) on the degradation of organic matters, Escherichia coli (E. coli) and total coliform in river water and to investigate the percentage recovery of the mTiO2 using a locally manufactured Polyester Woven Fabric Microfiltration (PWFMF) membrane. The PWFMF though uncharacterized has been used in a number of studies for treating domestic and industrial waste waters. The best-performing grade was used to optimize the degradation efficiency of E. coli in river water using the Design of Experiments (DOE) methodology.
Grade 2 of the mTiO2, which is hydrated titanium dioxide with additions (ahTiO2) of particle size range of 0.2 – 53 µm at a concentration of 2.5 g/l displayed an advantageous photocatalytic activity. The results show that 80 % of the organics were removed in 3 hours and increased to 93% after 6 hours. Two particle size ranges of 0.2 – 53 µm and 54 – 75 µm at a concentration of 5 g/l degraded organic matters to 90 % and 77 % in 3 hours respectively. The particle size range of 0.2 – 53 µm at a concentration of 5 g/l was then filtered using a PWFMF and turbidities went below 1 NTU after 20 minutes from feed turbidity of 470 NTU for all three trials. The average percentage recovery in 2 hours was 98.91 %.
The four grades of mTiO2 were analyzed for E. coli and total coliform for 4 hours at concentrations of 2, 5 and 7 g/l. Grade 2 achieved the E. coli specification of 0 count/ 100 mL at 5 g/l in 2 hours and at 7 g/l in 0.5 hours. Grade 4 E. coli specification was achieved with 7g/l in 4 hours. Grades 2 and 4 performed better since they both achieved the E. coli and total coliform specifications. Grade 2 was the best performing grade and was considered for statistical studies.
Grade 2 was then used on a comparative study between the Central Composite Design (CCD) and Box-Behnken Design (BBD), which are two of the major Response Surface Methodologies (RSM). The CCD compared to BBD provides high quality predictions over the entire design space. The CCD obtained optimum results for concentration of mTiO2 (X1), temperature (X2), initial pH (X3) and aeration (X4) which were 6.94 g/l, 28.75 OC, pH = 6.04, and 13.35 L/min for the maximum degradation efficiency of 99.85 % which showed comparable optimum results to the BBD that were 6.45 g/l, 28.28 OC, pH = 6.02 and 12.21 L/min for the maximum degradation efficiency of 99.80%. These theoretical model results were validated by practical experiments that produced the maximum degradation efficiency for CCD and BBD of 99.67 and 99.26 % respectively.
Grade 2 of the mTiO2 can be used as a photocatalyst for river water purification due to its strong ability for the removal of E. coli. The additions used in grades 2 and 4 during production improved the photocatalytic activity. The PWFMF membrane showed a great performance of above 98 % particle recovery of mTiO2 from treated water, although there was an indication that the smallest particles were passing through the membrane. The RSM results gave approximately the same optimum results that were well within the limits, which were experimentally validated and showed that the models were sustainable. It is recommended that the effect of additions be studied on the structures or the charge stability of the two grades.
Description: 
Submitted in fulfillment of the requirements of the degree of Master of Engineering: Chemical Engineering, Durban University of Technology, Durban, South Africa, 2016.
URI: http://hdl.handle.net/10321/1498
DOI: https://doi.org/10.51415/10321/1498
Appears in Collections:Theses and dissertations (Engineering and Built Environment)

Files in This Item:
File Description SizeFormat
DLAMINI_2016.pdf4.77 MBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

750
checked on Dec 22, 2024

Download(s) 50

684
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.