Please use this identifier to cite or link to this item: http://hdl.handle.net/10321/1733
Title: Biological activities of synthetic coumarin derivatives
Authors: Kasumbwe, Kabange 
Issue Date: 2016
Abstract: Coumarins are naturally occurring α-benzopyrone derivatives known for their pharmacological properties such as anticoagulant, antimicrobial, anticancer, antioxidant, anti-inflammatory and antiviral properties. The pharmacological, biochemical, and curative applications of coumarins depend on the substitution around the coumarin core structure. In the present study, seven halogenated coumarins CMRN1 - CMRN7 were synthesized and evaluated for mosquito larvicidal, repellancy , and insecticidal activity against Anopheles arabiensis. Furthermore, the antimicrobial properties of compounds CMRN1 - CMRN7 were evaluated by assessing the bacterial and fungicidal activities using the disc diffusion method. The anti-inflammatory properties were evaluated using the 5-lipoxygenase kit assay. The evaluation of the safe use of the compounds was determined using the Brine shrimp lethal test. The potential carcinogenic properties of the studied compounds was done using the Salmonella mutagenicity test. The anti-cancer property of the studied compounds was evaluated against UACC62 (Melanoma), MCF-7 (Breast cancer), and PBMC (Peripheral blood mononuclear) cell lines using of MTT assay. The apoptotic potential of the synthesized coumarin was evaluated against UACC62 (Melanoma) cell by assessing their morphological changes, membrane change, mitochondria membrane potential, and caspase-3 activity using the Annexin V-PI staining, JC-1, caspase-3 enzyme kits, respectively, on flow cytometer. The results were compared to a known anti-cancer drug, doxorubicin. The results showed that compounds CMRN1, CMRN2, CMRN4, CMRN5 and CMRN7 exerted 100% larval mortality within 24 h of exposure. All halogenated coumarins reversibly knocked down adult mosquitoes but did not kill them after 24 h of exposure. Furthermore, the adulticidal activity of the compounds was considered only mild to moderate. The antimicrobial activity of the synthetized coumarins CMRN1 - CMRN7 were assessed against E. coli, K. pneumoniae, S. marcescens, S. faecalis, B. cereus, B. coagulans, B. stearothermophilus, C. freundii, S. aureus and M. luteus bacteria and three yeast cultures, C. albicans, C. utilis, S. cerevisiae as well as two fungal species, A. flavus and A. niger. Compounds CMRN1 and CMRN2 showed bacterial growth inhibition for all the tested species except K. pneumonia and B. stearothermophilus. Compounds CMRN4 and CMRN7 showed moderate bacterial inhibition against B. cereus, M. luteus and S. aureus. The anti-inflammatory activity of the coumarins analogues showed that 1 mg/mL of the compounds CMRN1, CMRN2, CMRN4 and CMRN5 displayed moderate anti-inflammatory activity when compared to the positive control, 15-lapoxygenase. The cytotoxicity results of the studied synthetized coumarins displayed selective activity towards the cancer cell lines used in this study. Our studies showed that CMRN1, CMRN2, CMRN4, and CMRN5 had significant cytotoxity effect against UACC-62 (Melanoma) and MCF-7 ( Breast) cancer cells with an inhibitory concentration (IC50) which displayed significant cytotoxicity effect, in particular CMRN4 and CMRN5. These compounds CMRN1- CMRN7 showed no toxicity effect against PBMCs cell line. The mechanism of cell death, that is, necrosis or apoptosis induced by the coumarins was investigated against UACC-62 (Melanoma). We found that CMRN1, CMRN2, CMRN4, CMRN5 induced morphological changes, characteristic of apoptosis . Annexin V kit showed that CMRN1, CMRN2 and CMRN5 showed early apopotosis and late apoptosis was particularly higher for compound CMRN4. The disruption of the mitochondria membrane was noticed to be greater in CMRN1 and CMRN5 when compared to the positive control doxorubicin. Compound CMRN4 produced high levels of caspase-3 positive compared to the control. The coumarin compounds showed no mutagenicity and were also found to be non-toxic to brine shrimps. In conclusion, compounds CMRN1, CMRN2, CMRN4, CMRN5 and CMRN7 are potential larvicidal agents because they exhibited close to 100% activity within 24 h. Furthermore, the anti-cancer efficiency of compounds CMRN1, CMRN2, CMRN4, and CMRN5, is enough qualification for them to be optimized for increase anticancer potency.
Description: Submitted in partial fulfillment for the Degree of Master of Applied Sciences in Biotechnology, Durban University of Technology, Durban, South Africa, 2016.
URI: http://hdl.handle.net/10321/1733
Appears in Collections:Theses and dissertations (Applied Sciences)

Files in This Item:
File Description SizeFormat 
KASUMBWE_2016.pdf3.8 MBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s) 50

314
checked on Dec 17, 2018

Download(s) 50

631
checked on Dec 17, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.