Please use this identifier to cite or link to this item: https://hdl.handle.net/10321/3389
DC FieldValueLanguage
dc.contributor.authorTetteh, E. K.en_US
dc.contributor.authorRathilal, S.en_US
dc.contributor.authorNaidoo, D. B.en_US
dc.date.accessioned2020-06-08T06:51:55Z-
dc.date.available2020-06-08T06:51:55Z-
dc.date.issued2020-06-
dc.identifier.citationTetteh, E.K., Rathilal, S., Naidoo, D.B. 2020. Photocatalytic degradation of oily waste and phenol from a local South Africa oil refinery wastewater using response methodology. Scientific reports. 10(1): 8850-. doi:10.1038/s41598-020-65480-5en_US
dc.identifier.issn2045-2322-
dc.identifier.issn2045-2322 (Online)-
dc.identifier.otherpubmed: 32483279-
dc.identifier.urihttp://hdl.handle.net/10321/3389-
dc.description.abstractThe photocatalytic degradation of a local South Africa oil refinery wastewater was conducted under UV radiation using an aqueous catalyst of titanium dioxide (TiO2), Degussa P25 (80% anatase, 20% rutile) in suspension. The experiment was carried out in a batch aerated photocatalytic reactor based on a central composite design (CCD) and analyzed using response surface methodology (RSM). The effects of three operational variables viz. TiO2 dosage (2-8 g/L), runtime (30-90 minutes), and airflow rate (0.768-1.48 L/min) were examined for the removal of phenol and soap oil and grease (SOG). The data derived from the CCD, and the successive analysis of variance (ANOVA) showed the TiO2 dosage to be the most influential factor, while the other factors were also significant (P < 0.0001). Also, the ANOVA test revealed the second-order of TiO2 dosage and runtime as the main interaction factors on the removal efficiency. To maximize the pollutant removal, the optimum conditions were found at runtime of 90 minutes, TiO2 dosage of 8 g/L, and an aeration flow rate of 1.225 L/min. Under the conditions stated, the percentage removal of phenol (300 ± 7) and SOG (4000 ± 23) were 76% and 88% respectively. At 95% confidence level, the predicted models developed results were in reasonable agreement with that of the experimental data, which confirms the adaptability of the models. The first-order kinetic constants were estimated as 0.136 min-1 and 0.083 min-1 for SOG and phenol respectively.en_US
dc.format.extent12 p.en_US
dc.format.mediumElectronic-
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.ispartofScientific reports; Vol. 10, Issue 1en_US
dc.titlePhotocatalytic degradation of oily waste and phenol from a local South Africa oil refinery wastewater using response methodologyen_US
dc.typeArticleen_US
dc.date.updated2020-06-05T19:10:34Z-
dc.publisher.urihttps://www.nature.com/articles/s41598-020-65480-5en_US
dcterms.dateAccepted2020-5-5-
dc.identifier.doi10.1038/s41598-020-65480-5-
local.sdgSDG06-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Research Publications (Engineering and Built Environment)
Files in This Item:
File Description SizeFormat
TETTEH_SR_10_8850_2020.pdf1.97 MBAdobe PDFView/Open
Show simple item record

Page view(s)

586
checked on Dec 22, 2024

Download(s)

101
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.