Please use this identifier to cite or link to this item: https://hdl.handle.net/10321/5165
Title: Cheminformatics identification and validation of dipeptidyl peptidase-IV modulators from Shikimate pathway-derived phenolic acids towards interventive type-2 diabetes therapy
Authors: Balogun, Fatai Oladunni 
Naidoo, Kaylene 
Aribisala, Jamiu Olaseni 
Pillay, Charlene 
Sabiu, Saheed 
Keywords: Chlorogenic acid;Diprotin A;Dipeptidyl peptidase IV;Molecular dynamics simulations;Phenolic acids;Type-2 diabetes mellitus;Chlorogenic acid;Dipeptidyl peptidase IV;Diprotin A;Molecular dynamics Simulations;Phenolic acids;type-2 diabetes mellitus;0301 Analytical Chemistry;0601 Biochemistry and Cell Biology;1103 Clinical Sciences
Issue Date: Oct-2022
Publisher: MDPI AG
Source: Balogun, F.O. et al. 2022. Cheminformaticsidentification and validation of dipeptidyl peptidase-IV modulators from Shikimate pathway-derived phenolic acids towards interventive type-2 diabetes therapy. Metabolites. 12(10): 937-. doi:10.3390/metabo12100937
Journal: Metabolites; Vol. 12, Issue 10 
Abstract: 
Recently, dipeptidyl peptidase-IV (DPP-IV) has become an effective target in the management of type-2 diabetes mellitus (T2D). The study aimed to determine the efficacy of shikimate pathway-derived phenolic acids as potential DPP-IV modulators in the management of T2D. The study explored in silico (molecular docking and dynamics simulations) and in vitro (DPP-IV inhibitory and kinetics assays) approaches. Molecular docking findings revealed chlorogenic acid (CA) among the examined 22 phenolic acids with the highest negative binding energy (-9.0 kcal/mol) showing a greater affinity for DPP-IV relative to the standard, Diprotin A (-6.6 kcal/mol). The result was corroborated by MD simulation where it had a higher affinity (-27.58 kcal/mol) forming a more stable complex with DPP-IV than Diprotin A (-12.68 kcal/mol). These findings were consistent with in vitro investigation where it uncompetitively inhibited DPP-IV having a lower IC50 (0.3 mg/mL) compared to Diprotin A (0.5 mg/mL). While CA showed promising results as a DPP-IV inhibitor, the findings from the study highlighted the significance of medicinal plants particularly shikimate-derived phenolic compounds as potential alternatives to synthetic drugs in the effective management of T2DM. Further studies, such as derivatisation for enhanced activity and in vivo evaluation are suggested to realize its full potential in T2D therapy.
URI: https://hdl.handle.net/10321/5165
ISSN: 2218-1989 (Online)
DOI: 10.3390/metabo12100937
Appears in Collections:Research Publications (Applied Sciences)

Files in This Item:
File Description SizeFormat
Balogun et al._2022.pdf3.43 MBAdobe PDFView/Open
Metabolites copyright clearance.docx138.18 kBMicrosoft Word XMLView/Open
Show full item record

Page view(s)

52
checked on May 16, 2024

Download(s)

15
checked on May 16, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.