Please use this identifier to cite or link to this item: https://hdl.handle.net/10321/5598
DC FieldValueLanguage
dc.contributor.authorMoyo, Ranganai Tawandaen_US
dc.contributor.authorDewa, Mendonen_US
dc.contributor.authorRomero, Héctor Felipe Mateoen_US
dc.contributor.authorGómez, Victor Alonsoen_US
dc.contributor.authorAragonés, Jose Ignacio Moralesen_US
dc.contributor.authorHernández-Callejo, Luisen_US
dc.date.accessioned2024-10-13T06:19:43Z-
dc.date.available2024-10-13T06:19:43Z-
dc.date.issued2024-09-12-
dc.identifier.citationMoyo, R.T. et al. 2024. An adaptive neuro-fuzzy inference scheme for defect detection and classification of solar Pv cells. Journal of Renewable Energy and Sustainable Development. 10(2) 218-232. doi: http://dx.doi.org/10.21622/RESD.2024.10.2.929en_US
dc.identifier.issn2356-8569-
dc.identifier.urihttps://hdl.handle.net/10321/5598-
dc.description.abstractThis research paper presents an innovative approach for defect detection and classification of solar photovoltaic (PV) cells using the adaptive neuro-fuzzy inference system (ANFIS) technique. As solar energy continues to be a vital component of the global renewable energy mix, ensuring the reliability and efficiency of PV systems is paramount. Detecting and classifying defects in PV cells are crucial steps toward ensuring optimal performance and longevity of solar panels. Traditional defect detection and classification methods often face challenges in providing precise and adaptable solutions to this complex problem. In this study the researchers pose an ANFIS-based scheme that combines the strengths of neural networks and fuzzy logic to accurately identify and classify various types of defects in solar PV cells. The adaptive learning mechanism of ANFIS enables the model to continuously adapt to changes in operating conditions ensuring robust and reliable defect detection capabilities. The ANFIS model was developed and implemented using MATLAB and a high predicting accuracy was achieved.en_US
dc.format.extent15 pen_US
dc.language.isoenen_US
dc.publisherAcademy Publishing Centeren_US
dc.relation.ispartofJournal of Renewable Energy and Sustainable Development; Vol. 10, Issue 2en_US
dc.subjectANFISen_US
dc.subjectFuzzy logicen_US
dc.subjectPV cellsen_US
dc.subjectDefect detection and classificationen_US
dc.subjectMATLABen_US
dc.titleAn adaptive neuro-fuzzy inference scheme for defect detection and classification of solar Pv cellsen_US
dc.typeArticleen_US
dc.date.updated2024-09-29T19:35:15Z-
dc.publisher.urihttp://dx.doi.org/10.21622/RESD.2024.10.2.929en_US
dcterms.dateAccepted2024-8-27-
dc.identifier.doihttp://dx.doi.org/10.21622/RESD.2024.10.2.929-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
Appears in Collections:Research Publications (Engineering and Built Environment)
Files in This Item:
File Description SizeFormat
Moyo et al_2024.pdf2.18 MBAdobe PDFView/Open
JRESD Copyright Clearance.docx297.91 kBMicrosoft Word XMLView/Open
Show simple item record

Page view(s)

49
checked on Dec 13, 2024

Download(s)

6
checked on Dec 13, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.