Please use this identifier to cite or link to this item: https://hdl.handle.net/10321/5615
DC FieldValueLanguage
dc.contributor.authorOboyi, J.en_US
dc.contributor.authorOrim, R. E.en_US
dc.contributor.authorOfem, A. E.en_US
dc.contributor.authorMaharaj, A.en_US
dc.contributor.authorNarain, O. K.en_US
dc.date.accessioned2024-10-13T17:06:35Z-
dc.date.available2024-10-13T17:06:35Z-
dc.date.issued2024-
dc.identifier.citationOboyi, J. et al. 2024. On AI-iteration process for finding fixed points of enriched contraction and enriched nonexpansive mappings with application to fractional BVPs. Advances in Fixed Point Theory. doi:10.28919/afpt/8812en_US
dc.identifier.issn1927-6303 (Online)-
dc.identifier.urihttps://hdl.handle.net/10321/5615-
dc.description.abstractIn this article, we consider the AI-iteration process for approximating the fixed points of enriched contraction and enriched nonexpansive mappings. Firstly, we prove the strong convergence of the AI-iteration process to the fixed points of enriched contraction mappings. Furthermore, we present a numerical experiment to demonstrate the efficiency of the AI-iterative method over some existing methods. Secondly, we establish the weak and strong convergence results of AI-iteration method for enriched nonexpansive mappings in uniformly convex Banach spaces. Thirdly, the stability analysis results of the considered method is presented. Finally, we apply our results to the solution of fractional boundary value problems in Banach spacesen_US
dc.format.extent22 pen_US
dc.language.isoenen_US
dc.publisherSCIK Publishing Corporationen_US
dc.relation.ispartofAdvances in Fixed Point Theoryen_US
dc.subjectEnriched contraction mappingen_US
dc.subjectEnriched nonexpansive mappingen_US
dc.subjectStabilityen_US
dc.subjectFractional BVPsen_US
dc.titleOn AI-iteration process for finding fixed points of enriched contraction and enriched nonexpansive mappings with application to fractional BVPsen_US
dc.typeArticleen_US
dc.date.updated2024-10-02T07:01:11Z-
dc.publisher.urihttp://dx.doi.org/10.28919/afpt/8812en_US
dc.identifier.doi10.28919/afpt/8812-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Research Publications (Applied Sciences)
Files in This Item:
File Description SizeFormat
Oboyi et al_2024.pdf183.3 kBAdobe PDFView/Open
AFPT Copyright Clearance.docx220.14 kBMicrosoft Word XMLView/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.