Please use this identifier to cite or link to this item: https://hdl.handle.net/10321/5438
DC FieldValueLanguage
dc.contributor.authorMebawondu, Akindele Adebayoen_US
dc.contributor.authorSunday, Akunna Sunsanen_US
dc.contributor.authorNarain, Ojen Kumaren_US
dc.contributor.authorMaharaj, Adhiren_US
dc.date.accessioned2024-08-28T12:49:01Z-
dc.date.available2024-08-28T12:49:01Z-
dc.date.issued2024-
dc.identifier.citationMebawondu, A.A. et al. 2024. An inertial iterative method for solving split monotone inclusion problems in Hilbert spaces. Numerical Algebra, Control and Optimization: 1-19. doi:10.3934/naco.2024039en_US
dc.identifier.issn2155-3289-
dc.identifier.issn2155-3297 (Online)-
dc.identifier.urihttps://hdl.handle.net/10321/5438-
dc.description.abstractThe purpose of this work is to introduce and study a new type of a relaxed extrapolation iterative method for approximating the solution of a split monotone inclusion problem in the framework of Hilbert spaces. More so, we establish a strong convergence theorem of the proposed iterative method under the assumption that the set-valued operator is maximal monotone and the single-valued operator is Lipschitz continuous monotone which is weaker assumption unlike other methods in which the single-valued is inverse strongly monotone. We emphasize that the value of the Lipschitz constant is not re- quired for the iterative technique to be implemented, and during computation, the Lipschitz continuity was not used. Lastly, we present an application and also some numerical experiments to show the e ciency and the applicability of our proposed iterative method.en_US
dc.format.extent19 pen_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)en_US
dc.relation.ispartofNumerical Algebra, Control and Optimizationen_US
dc.subjectHilbert Spacesen_US
dc.subject0102 Applied Mathematicsen_US
dc.subject0103 Numerical and Computational Mathematicsen_US
dc.subject4901 Applied mathematicsen_US
dc.subjectIterative methoden_US
dc.subjectSplit monotone inclusion problemen_US
dc.subjectHilbert spaceen_US
dc.subjectLipschitzen_US
dc.titleAn inertial iterative method for solving split monotone inclusion problems in Hilbert spacesen_US
dc.typeArticleen_US
dc.date.updated2024-08-27T11:06:30Z-
dc.publisher.urihttp://dx.doi.org/10.3934/naco.2024039en_US
dc.identifier.doi10.3934/naco.2024039-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
Appears in Collections:Research Publications (Applied Sciences)
Files in This Item:
File Description SizeFormat
NACO Copyright Clearance.docx147.87 kBMicrosoft Word XMLView/Open
Mebawondu_Maharaj et al_2020.pdf449.17 kBAdobe PDFView/Open
Show simple item record

Page view(s)

70
checked on Dec 13, 2024

Download(s)

30
checked on Dec 13, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.