Please use this identifier to cite or link to this item: https://hdl.handle.net/10321/2319
DC FieldValueLanguage
dc.contributor.authorSinuvasan, R.en_US
dc.contributor.authorTamizhmani, K. M.en_US
dc.contributor.authorLeach, P. G. L.en_US
dc.date.accessioned2017-03-08T11:13:23Z-
dc.date.available2017-03-08T11:13:23Z-
dc.date.issued2016-09-28-
dc.identifier.citationSinuvasan, R., Tamizhmani, K.M. & Leach, P.G.L. Algebraic and singularity properties of a class of generalisations of the Kummer–Schwarz equation. Differ Equ Dyn Syst 28, 315–324 (2020). https://doi.org/10.1007/s12591-016-0327-5en_US
dc.identifier.issn0971-3514 (print)-
dc.identifier.issn0974-6870 (online)-
dc.identifier.urihttp://hdl.handle.net/10321/2319-
dc.description.abstractThe Kummer–Schwarz Equation, 2y′y′′′−3y′′2=0, (the prime denotes differentiation with respect to the independent variable x) is well known from its connection to the Schwartzian Derivative and in its own right for its interesting properties in terms of symmetry and singularity. We examine a class of equations which are a natural generalisation of the Kummer–Schwarz Equation and find that the algebraic and singularity properties of this class of equations display an attractive set of patterns. We demonstrate that all members of this class are readily integrable.en_US
dc.format.extent10 pen_US
dc.language.isoenen_US
dc.publisherSpringerlinken_US
dc.relation.ispartofDifferential equations and dynamical systems (Online)en_US
dc.subjectKummer–Schwarzen_US
dc.subjectSymmetriesen_US
dc.subjectSingularitiesen_US
dc.subjectIntegrabilityen_US
dc.titleAlgebraic and singularity properties of a class of generalisations of the Kummer–Schwarz equationen_US
dc.typeArticleen_US
dc.dut-rims.pubnumDUT-005599en_US
dc.identifier.doihttps://doi.org/10.1007/s12591-016-0327-5-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:Research Publications (Applied Sciences)
Files in This Item:
File Description SizeFormat
Sinuvasan_DEDS_Pgs1-10_2016.pdf293.11 kBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

601
checked on Dec 22, 2024

Download(s)

164
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.